Existing Graph Convolutional Networks (GCNs) are shallow---the number of the layers is usually not larger than 2. The deeper variants by simply stacking more layers, unfortunately perform worse, even involving well-known tricks like weight penalizing, dropout, and residual connections. This paper reveals that developing deep GCNs mainly encounters two obstacles: \emph{over-fitting} and \emph{over-smoothing}. The over-fitting issue weakens the generalization ability on small graphs, while over-smoothing impedes model training by isolating output representations from the input features with the increase in network depth. Hence, we propose DropEdge, a novel technique to alleviate both issues. At its core, DropEdge randomly removes a certain number of edges from the input graphs, acting like a data augmenter and also a message passing reducer. More importantly, DropEdge enables us to recast a wider range of Convolutional Neural Networks (CNNs) from the image field to the graph domain; in particular, we study DenseNet and InceptionNet in this paper. Extensive experiments on several benchmarks demonstrate that our method allows deep GCNs to achieve promising performance, even when the number of layers exceeds 30---the deepest GCN that has ever been proposed.


翻译:现有的图表革命网络(GCN)是浅浅的,层数通常不大于2。 更深层的变种只是堆叠更多的层,但不幸的是表现更差,甚至涉及重量惩罚、辍学和剩余连接等众所周知的把戏。 本文显示,开发深层的GCN主要遇到两个障碍: \ emph{ overformate} 和\ emph{over-soothering} 。 过度适应问题削弱了小图的概括能力,而过度移动则阻碍模型培训,因为随着网络深度的提高,将输入特征与输出特征分离。 因此,我们提议采用DevoEdge, 这是一种缓解这两个问题的新方法。 在其核心, DevoEge 随机地清除了输入图中的某些边缘, 像是数据增强器和传递的信息。 更重要的是, 下降Eget 使我们能够从图像字段到图形域重新播送更广泛的革命神经网络(CN)网络(CN) ; 特别是,我们研究DenseNet和Inception 等新技术, 使得GNet能够不断的深度实验。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
10+阅读 · 2018年2月4日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关论文
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
10+阅读 · 2018年2月4日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员