The Houma Alliance Book is one of the national treasures of the Museum in Shanxi Museum Town in China. It has great historical significance in researching ancient history. To date, the research on the Houma Alliance Book has been staying in the identification of paper documents, which is inefficient to identify and difficult to display, study and publicize. Therefore, the digitization of the recognized ancient characters of Houma League can effectively improve the efficiency of recognizing ancient characters and provide more reliable technical support and text data. This paper proposes a new database of Houma Alliance Book ancient handwritten characters and a multi-modal fusion method to recognize ancient handwritten characters. In the database, 297 classes and 3,547 samples of Houma Alliance ancient handwritten characters are collected from the original book collection and by human imitative writing. Furthermore, the decision-level classifier fusion strategy is applied to fuse three well-known deep neural network architectures for ancient handwritten character recognition. Experiments are performed on our new database. The experimental results first provide the baseline result of the new database to the research community and then demonstrate the efficiency of our proposed method.
翻译:《胡马联盟书》是中国山西博物馆国家珍藏品之一,对古老历史的研究具有重大历史意义,迄今为止,《胡马联盟书》的研究一直停留在纸质文件的识别方面,因为文件的识别效率低,难以显示、研究和宣传,因此,对胡马联盟的公认古老人物的数字化可以有效提高识别古老人物的效率,并提供更可靠的技术支持和文本数据。本文提出了胡马联盟古老手写人物的新数据库,以及一种识别古老手写人物的多模式融合方法。在数据库中,从原书收藏和人类仿造作品中收集了297个类和3 547个古代手写人物样本。此外,决策级分类融合战略被用于整合三个众所周知的深层神经网络结构,用于古老手写字符识别。我们的新数据库进行了实验。实验结果首先为研究界提供了新数据库的基线结果,然后展示了我们拟议方法的效率。