Motivated by singularity of a certain class of Gaussian measures, we propose a data based transformation for infinite-dimensional data. For a classification problem, an appropriate joint transformation induces complete separation among the associated Gaussian processes. The misclassification probability of a simple classifier when applied on this transformed data asymptotically converges to zero. In a clustering problem, an appropriate modification of this transformation asymptotically leads to perfect separation of the populations. Theoretical properties are studied for the usual $k$-means clustering method when used on the transformed data. Good performance of the proposed methodology is demonstrated using simulated as well as benchmark data sets, when compared with some popular parametric and nonparametric classifiers for such functional data.
翻译:基于某类高斯度量的单一性,我们建议对无限维度数据进行基于数据的变化。对于分类问题,适当的联合转换导致相关高斯进程完全分离。在应用这一转变数据时,简单分类员的分类误差概率在瞬间接近于零。在组群问题中,这种转换的适当修改在瞬间导致人口完全分离。在使用转换数据时,对通常的以美元为单位的组群法进行了理论属性研究。在使用模拟和基准数据集时,与这类功能数据的一些流行的参数和非参数分类法相比,示范了拟议方法的良好性能。