Sequential recommendation aims to estimate how a user's interests evolve over time via uncovering valuable patterns from user behavior history. Many previous sequential models have solely relied on users' historical information to model the evolution of their interests, neglecting the crucial role that future information plays in accurately capturing these dynamics. However, effectively incorporating future information in sequential modeling is non-trivial since it is impossible to make the current-step prediction for any target user by leveraging his future data. In this paper, we propose a novel framework of sequential recommendation called Look into the Future (LIFT), which builds and leverages the contexts of sequential recommendation. In LIFT, the context of a target user's interaction is represented based on i) his own past behaviors and ii) the past and future behaviors of the retrieved similar interactions from other users. As such, the learned context will be more informative and effective in predicting the target user's behaviors in sequential recommendation without temporal data leakage. Furthermore, in order to exploit the intrinsic information embedded within the context itself, we introduce an innovative pretraining methodology incorporating behavior masking. In our extensive experiments on five real-world datasets, LIFT achieves significant performance improvement on click-through rate prediction and rating prediction tasks in sequential recommendation over strong baselines, demonstrating that retrieving and leveraging relevant contexts from the global user pool greatly benefits sequential recommendation. The experiment code is provided at https://anonymous.4open.science/r/LIFT-277C/Readme.md.
翻译:暂无翻译