In this paper, we have investigated the reliability of a K-out-of-N system for the components following Weibull distribution based on the generalized progressive hybrid censored data. We have obtained the maximum likelihood estimates (MLEs) of the unknown parameters and the reliability function of the system. Using asymptotic normality property of MLEs, the corresponding asymptotic confidence intervals are constructed. Furthermore, Bayes estimates are derived under squared error loss function with informative prior by using Markov Chain Monte Carlo (MCMC) technique. Highest posterior density (HPD) credible intervals are obtained. A Monte Carlo simulation study is carried out to compare performance of the established estimates. Finally, a real data set is considered for illustrative purposes.
翻译:在本文中,我们根据普遍渐进式混合审查数据,调查了韦布尔分发后各部件K-Out-N系统的可靠性;我们获得了对系统未知参数和可靠性功能的最大可能性估计值;利用最低限值的无症状常态特性,构建了相应的无症状信任间隔;此外,通过使用Markov 链子蒙特卡洛(MCMC)技术,在平方错误损失功能下得出了贝斯估计值;获得了最高后方密度(HPD)的可靠间隔;进行了蒙特卡洛模拟研究,以比较既定估计数的性能;最后,为说明起见,考虑了一套真实数据。