The Cahn--Hilliard equations are a versatile model for describing the evolution of complex morphologies. In this paper we present a computational pipeline for the numerical solution of a ternary phase-field model for describing the nanomorphology of donor--acceptor semiconductor blends used in organic photovoltaic devices. The model consists of two coupled fourth-order partial differential equations that are discretized using a finite element approach. In order to solve the resulting large-scale linear systems efficiently, we propose a preconditioning strategy that is based on efficient approximations of the Schur-complement of a saddle point system. We show that this approach performs robustly with respect to variations in the discretization parameters. Finally, we outline that the computed morphologies can be used for the computation of charge generation, recombination, and transport in organic solar cells.
翻译:Cahn-Hilliard方程式是描述复杂形态演变的多功能模型。在本文件中,我们为描述有机光伏装置中所用捐赠者-接受者半导体混合物纳米形态学的永久阶段模型的数字解决方案提供了一个计算管道。该模型包括两个相互交织的第四级部分差异方程式,这些方程式使用一个有限元素法分离。为了有效解决由此产生的大型线性系统,我们提出了一个基于支撑点系统Schur-Complication的有效近似的前提条件战略。我们表明,这一方法在离散参数的变化方面表现得非常有力。最后,我们概要指出,计算出来的形态可用于计算电荷生成、再组合和有机太阳能电池的运输。