The current best approximation algorithms for $k$-median rely on first obtaining a structured fractional solution known as a bi-point solution, and then rounding it to an integer solution. We improve this second step by unifying and refining previous approaches. We describe a hierarchy of increasingly-complex partitioning schemes for the facilities, along with corresponding sets of algorithms and factor-revealing non-linear programs. We prove that the third layer of this hierarchy is a $2.613$-approximation, improving upon the current best ratio of $2.675$, while no layer can be proved better than $2.588$ under the proposed analysis. On the negative side, we give a family of bi-point solutions which cannot be approximated better than the square root of the golden ratio, even if allowed to open $k+o(k)$ facilities. This gives a barrier to current approaches for obtaining an approximation better than $2 \sqrt{\phi} \approx 2.544$. Altogether we reduce the approximation gap of bi-point solutions by two thirds.
翻译:目前中枢美元的最佳近似算法首先依赖于获得一个结构化的分解解决方案,即双点解决方案,然后将其四舍五入为整数解决方案。 我们通过统一和完善先前的方法改进第二步。 我们描述了设施日益复杂的分解方案,以及相应的一套算法和因子反射非线性程序。 我们证明,这一层级的第三层是2.613美元,比目前的最佳比率2.675美元有所改进,而根据拟议的分析,任何一层都无法证明比2.588美元更好。 在负面方面,我们给出了一组双点解决方案,这些解决方案的近似性比黄金比率的平方根更近似,即使允许开立美元+(k)美元设施。这给目前获取近似值比2 美元和 qrt 美元= 2.544美元好的方法设置了障碍。 我们总共将双点解决方案的近似差距缩小了三分之二。