Sampling from a target measure whose density is only known up to a normalization constant is a fundamental problem in computational statistics and machine learning. In this paper, we present a new optimization-based method for sampling called mollified interaction energy descent (MIED). MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs). These energies rely on mollifier functions -- smooth approximations of the Dirac delta originated from PDE theory. We show that as the mollifier approaches the Dirac delta, the MIE converges to the chi-square divergence with respect to the target measure and the gradient flow of the MIE agrees with that of the chi-square divergence. Optimizing this energy with proper discretization yields a practical first-order particle-based algorithm for sampling in both unconstrained and constrained domains. We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD, while for constrained sampling problems our method readily incorporates constrained optimization techniques to handle more flexible constraints with strong performance compared to alternatives.
翻译:在计算统计和机器学习方面,从密度仅为常态常数而已知的目标测量中取样,这是计算统计和机器学习中的一个根本问题。在本文中,我们提出了一种新的基于优化的取样方法,称为软化互动能量源(MIED) 。MIED在称为软化互动能量(MIED)的概率测量中最大限度地减少了一种新的能量类别。这些能量依靠的是变压器功能 -- -- Dirac delta 的光滑近似值源自PDE 理论。我们显示,当变压器接近Dirac delta 时,MIE 与目标测量的奇夸差异相融合,MIE 的梯度流与奇夸差异一致。 优化这种能量的优化以适当的离散方式产生一种实用的一级粒子算法,用于在未受控制且受限制的领域进行取样。我们实验性地表明,由于未受限制的取样问题,我们的算法与SVGD等现有粒子算法相同,而受限制的取样问题,我们的方法很容易吸收受限制的优化技术,以便较灵活地处理较强的特性。