Inferring music time structures has a broad range of applications in music production, processing and analysis. Scholars have proposed various methods to analyze different aspects of time structures, such as beat, downbeat, tempo and meter. Many state-of-the-art (SOFA) methods, however, are computationally expensive. This makes them inapplicable in real-world industrial settings where the scale of the music collections can be millions. This paper proposes a new state space and a semi-Markov model for music time structure analysis. The proposed approach turns the commonly used 2D state spaces into a 1D model through a jump-back reward strategy. It reduces the state spaces size drastically. We then utilize the proposed method for causal, joint beat, downbeat, tempo, and meter tracking, and compare it against several previous methods. The proposed method delivers similar performance with the SOFA joint causal models with a much smaller state space and a more than 30 times speedup.
翻译:推断音乐时间结构在音乐制作、处理和分析方面有着广泛的应用。 学者们提出了各种分析时间结构不同方面的方法, 如节拍、 低拍、 节拍和计量等。 然而, 许多最先进的艺术( SOFA) 方法在计算上非常昂贵 。 这使得它们无法应用于音乐收藏规模可能达到百万的实实在在的工业环境。 本文提出了一个新的州空间和音乐时间结构分析的半马尔科夫模式。 提议的方法通过跳跃奖励战略将常用的 2D 状态空间转换为1D 模式。 它会大幅缩小州空间规模。 我们随后使用拟议的因果、 联合节拍、 下拍、 节拍和计量跟踪方法, 并与先前的几种方法进行比较。 拟议的方法与SOFA 联合因果模型的性能相似, 州空间要小得多, 加速超过 30 倍 。