We present LP-based approximation algorithms for the capacitated facility location problem (CFL), a long-standing problem with intriguing unsettled complexity and literature dated back to the 90s. We present an elegant iterative rounding scheme for the MFN relaxation that yields an approximation guarantee of $\left(10+\sqrt{67}\right)/2 \approx 9.0927$, a significant improvement upon the previous LP-based ratio due to An et al in~2014. For CFL with cardinality facility cost (CFL-CFC), we present an LP-based $4$-approximation algorithm, which surpasses the long-standing ratio of~$5$ due to Levi et al that ages up for decades since 2004. Our result considerably deepens the current understanding for the CFL problem and indicates that an LP-based ratio strictly better than $5$ in polynomial time for the general problem may still be possible to pursue.
翻译:我们提出了基于LP的功能化设施定位问题近似算法(CFL),这是一个长期存在的令人感兴趣的未解决复杂情况问题,文献可追溯到90年代。我们提出了一个优雅的最惠国宽松迭接法计划,该计划产生一个近似保证$left(10 ⁇ sqrt{67 ⁇ right)/2\ approx 9.0927美元,大大改进了An 等人在2014年和2014年之前的基于LP的比率。对于具有主要设施成本的CFL(CFL-CFC),我们提出了一个基于LP的4美元混合算法,该算法超过了自2004年以来数十年来对Levi等人的长期比率,即约5美元。我们的结果大大加深了目前对CFLF问题的理解,并表明,对于一般问题,基于LP的比率在多民族时期仍然可能超过5美元。