This paper provides a comprehensive estimation framework via nuclear norm plus $l_1$ norm penalization for high-dimensional approximate factor models with a sparse residual covariance. The underlying assumptions allow for non-pervasive latent eigenvalues and a prominent residual covariance pattern. In that context, existing approaches based on principal components may lead to misestimate the latent rank, due to the numerical instability of sample eigenvalues. On the contrary, the proposed optimization problem retrieves the latent covariance structure and exactly recovers the latent rank and the residual sparsity pattern. Conditioning on them, the asymptotic rates of the subsequent ordinary least squares estimates of loadings and factor scores are provided, the recovered latent eigenvalues are shown to be maximally concentrated and the estimates of factor scores via Bartlett's and Thompson's methods are proved to be the most precise given the data. The validity of outlined results is highlighted in an exhaustive simulation study and in a real financial data example.


翻译:本文件通过核规范加上1美元标准对高维近效系数模型进行全面估计框架,其剩余余差很少。基本假设允许非渗透性潜潜潜稀值和显著余余共差模式。在这方面,基于主要组成部分的现有办法可能导致对潜在值的误估,因为样本源值的数值不稳定。相反,拟议的优化问题检索了潜伏共差结构,完全恢复了潜伏值和剩余宽度模式。根据这些假设,提供了随后普通普通最低平方值的装货和要素分数估计的无症状率,发现回收的潜在潜潜稀值最集中,通过Bartlett和Thompson的方法对系数分数的估计被证明为最准确的数据。在详尽的模拟研究中和真正的财务数据实例中强调了概要结果的有效性。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
专知会员服务
19+阅读 · 2020年12月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
26+阅读 · 2020年2月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
已删除
将门创投
3+阅读 · 2017年9月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
专知会员服务
19+阅读 · 2020年12月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
26+阅读 · 2020年2月15日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
已删除
将门创投
3+阅读 · 2017年9月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员