In this paper, we propose a novel development in the context of entropy stable finite-volume/finite-difference schemes. In the first part, we focus on the construction of high-order entropy conservative fluxes. Already in [LMR2002], the authors have generalized the second order accurate entropy conservative numerical fluxes proposed by Tadmor to high-order ($2p$) by a simple centered linear combination. We generalize this result additionally to non-centered flux combinations which is in particular favorable if non-periodic boundary conditions are needed. In the second part, a Lax-Wendroff theorem for the combination of these fluxes and the entropy dissipation steering from [Klein2022] is proven. In numerical simulations, we verify all of our theoretical findings.
翻译:在本文中,我们提出了在英特罗比稳定有限量/无限差异计划背景下的新发展。 在第一部分,我们侧重于建造高序的丙基保守通量。在[LMR2002]中,作者已经将塔德莫尔提出的第二顺序准确的丙基保守通量推广到一个简单的中枢线性组合的高序(2p$ )。我们将这一结果推广到非中枢通量组合,如果需要非定期边界条件,这种组合特别有利。在第二部分,用Lax-Wendroff理论来综合这些通量和[Klein2022] 的英特罗普消化方向。在数字模拟中,我们验证了我们所有的理论结论。