Deep reinforcement learning (RL) is a powerful framework to train decision-making models in complex dynamical environments. However, RL can be slow as it learns through repeated interaction with a simulation of the environment. Accelerating RL requires both algorithmic and engineering innovations. In particular, there are key systems engineering bottlenecks when using RL in complex environments that feature multiple agents or high-dimensional state, observation, or action spaces, for example. We present WarpDrive, a flexible, lightweight, and easy-to-use open-source RL framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit), building on PyCUDA and PyTorch. Using the extreme parallelization capability of GPUs, WarpDrive enables orders-of-magnitude faster RL compared to common implementations that blend CPU simulations and GPU models. Our design runs simulations and the agents in each simulation in parallel. It eliminates data copying between CPU and GPU. It also uses a single simulation data store on the GPU that is safely updated in-place. Together, this allows the user to run thousands of concurrent multi-agent simulations and train on extremely large batches of experience. For example, WarpDrive yields 2.9 million environment steps/second with 2000 environments and 1000 agents (at least 100x higher throughput compared to a CPU implementation) in a benchmark Tag simulation. WarpDrive provides a lightweight Python interface and environment wrappers to simplify usage and promote flexibility and extensions. As such, WarpDrive provides a framework for building high-throughput RL systems.


翻译:深度增强学习(RL)是复杂动态环境中培训决策模型的强大框架。然而,RL在通过反复与环境模拟互动学习的过程中速度可能很慢。加速RL需要算法和工程创新。特别是,在复杂环境中使用RL存在关键的系统工程瓶颈,这些环境具有多重剂或高维状态、观测或行动空间等特征。我们提出了WarpDrive,这是一个灵活、轻量和易于使用的开放源代码RL框架,用于在单一GPU(Graphics处理股)上,在PyCUDA和PyTorch上进行简化到终端多剂 RLL。利用GL的极端平行能力,WarpD在使用RL时,与将CP的模拟模型和GP模型混合在一起,我们的设计运行模拟器和每次模拟的代理器。它消除了CPU和GPU之间的数据复制。它还在GPU(GPU)上使用一个单一的模拟数据存储存储存储器数据存储器存储器,并在2000年的Prillex运行一个极高水平的Pral环境上,使这个用户能够通过一个快速运行一个模拟环境,在2000年的Pral。

0
下载
关闭预览

相关内容

MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
6+阅读 · 2021年6月24日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
8+阅读 · 2018年6月19日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员