End-to-end learning robotic manipulation with high data efficiency is one of the key challenges in robotics. The latest methods that utilize human demonstration data and unsupervised representation learning has proven to be a promising direction to improve RL learning efficiency. The use of demonstration data also allows "warming-up" the RL policies using offline data with imitation learning or the recently emerged offline reinforcement learning algorithms. However, existing works often treat offline policy learning and online exploration as two separate processes, which are often accompanied by severe performance drop during the offline-to-online transition. Furthermore, many robotic manipulation tasks involve complex sub-task structures, which are very challenging to be solved in RL with sparse reward. In this work, we propose a unified offline-to-online RL framework that resolves the transition performance drop issue. Additionally, we introduce goal-aware state information to the RL agent, which can greatly reduce task complexity and accelerate policy learning. Combined with an advanced unsupervised representation learning module, our framework achieves great training efficiency and performance compared with the state-of-the-art methods in multiple robotic manipulation tasks.


翻译:高数据效率的端到端学习机器人操作是机器人的关键挑战之一。 使用人类演示数据和无人监督的代理学习的最新方法已证明是提高RL学习效率的一个大有希望的方向。 使用演示数据还允许使用模拟学习或最近出现的离线强化学习算法的离线数据“升温”RL政策,模拟学习或最近出现的离线强化学习算法。然而,现有工作往往将离线政策学习和在线探索作为两个不同的过程处理,这些过程往往伴随着离线到在线过渡期间业绩严重下降。 此外,许多机器人操作工作涉及复杂的子任务结构,在RL很难以微薄的奖励解决这些任务。 在这项工作中,我们提议建立一个统一的离线到线RL框架,解决过渡性业绩下降问题。 此外,我们向RL代理引入目标识别状态信息,这可以大大降低任务复杂性并加速政策学习。与先进的不受监控的代理学习模块相结合,我们的框架在多个机器人操纵任务中实现了与最先进的方法相比,培训效率和绩效很高。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员