The celebrated Morris counter uses $\log_2\log_2 n + O(\log_2 \sigma^{-1})$ bits to count up to $n$ with a relative error $\sigma$, where if $\hat{\lambda}$ is the estimate of the current count $\lambda$, then $\mathbb{E}|\hat{\lambda}-\lambda|^2 <\sigma^2\lambda^2$. A natural generalization is \emph{multi-dimensional} approximate counting. Let $d\geq 1$ be the dimension. The count vector $x\in \mathbb{N}^d$ is incremented entry-wisely over a stream of coordinates $(w_1,\ldots,w_n)\in [d]^n$, where upon receiving $w_k\in[d]$, $x_{w_k}\gets x_{w_k}+1$. A \emph{$d$-dimensional approximate counter} is required to count $d$ coordinates simultaneously and return an estimate $\hat{x}$ of the count vector $x$. Aden-Ali, Han, Nelson, and Yu \cite{aden2022amortized} showed that the trivial solution of using $d$ Morris counters that track $d$ coordinates separately is already optimal in space, \emph{if each entry only allows error relative to itself}, i.e., $\mathbb{E}|\hat{x}_j-x_j|^2<\sigma^2|x_j|^2$ for each $j\in [d]$. However, for another natural error metric -- the \emph{Euclidean mean squared error} $\mathbb{E} |\hat{x}-x|^2$ -- we show that using $d$ separate Morris counters is sub-optimal. In this work, we present a simple and optimal $d$-dimensional counter with Euclidean relative error $\sigma$, i.e., $\mathbb{E} |\hat{x}-x|^2 <\sigma^2|x|^2$ where $|x|=\sqrt{\sum_{j=1}^d x_j^2}$, with a matching lower bound. The upper and lower bounds are proved with ideas that are strikingly simple. The upper bound is constructed with a certain variable-length integer encoding and the lower bound is derived from a straightforward volumetric estimation of sphere covering.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月15日
Arxiv
1+阅读 · 2024年12月13日
Arxiv
1+阅读 · 2024年12月13日
Arxiv
1+阅读 · 2024年12月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关论文
Arxiv
1+阅读 · 2024年12月15日
Arxiv
1+阅读 · 2024年12月13日
Arxiv
1+阅读 · 2024年12月13日
Arxiv
1+阅读 · 2024年12月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员