Centrality measures for simple graphs/networks are well-defined and each has numerous main-memory algorithms. However, for modeling complex data sets with multiple types of entities and relationships, simple graphs are not ideal. Multilayer networks (or MLNs) have been proposed for modeling them and have been shown to be better suited in many ways. Since there are no algorithms for computing centrality measures directly on MLNs, existing strategies reduce (aggregate or collapse) the MLN layers to simple networks using Boolean AND or OR operators. This approach negates the benefits of MLN modeling as these computations tend to be expensive and furthermore results in loss of structure and semantics. In this paper, we propose heuristic-based algorithms for computing centrality measures (specifically, degree centrality) on MLNs directly (i.e., without reducing them to simple graphs) using a newly-proposed decoupling-based approach which is efficient as well as structure and semantics preserving. We propose multiple heuristics to calculate the degree centrality using the network decoupling-based approach and compare accuracy and precision with Boolean OR aggregated Homogeneous MLNs (HoMLN) for ground truth. The network decoupling approach can take advantage of parallelism and is more efficient compared to aggregation-based approaches. Extensive experimental analysis is performed on large synthetic and real-world data sets of varying characteristics to validate the accuracy and efficiency of our proposed algorithms.


翻译:简单图表/网络的中央度度量是明确界定的,每个图/网络都有许多主要模拟算法。然而,对于模拟具有多种类型实体和关系的复杂数据集而言,简单的图表是不理想的。多层网络(或MLNs)是为建模而提出的,并在许多方面被证明更适合。由于没有直接计算MLNs中心度量的算法,现有战略减少了(聚合或崩溃)MLN层到使用Boolean 和 OR 操作器的简单网络。这种方法否定了MLN建模的好处,因为这些计算方法往往费用昂贵,并导致结构和语义的丧失。在本文中,我们提出基于超值的算法,用于直接计算MLNs的中心度测量(具体而言,程度中心点),而没有将其降低为简单的图表,因此,现有战略减少了(聚合或崩溃)MLN,而采用新提出的基于脱钩法的方法,该方法既效率又具有结构上的差异和语义性保存。我们提议用多种超值方法来计算网络的高度中心度中心度,使用网络的解比Ncoling-Nalalal-roal-roal-roal-roal-roal-roal-roal-roal-roupmal-roisal-roismalismal-ro)的计算方法,并比较Gyal-roal-romal-ro-ro-roismalismal-coal-coal-romal-romalismal-romal-coal-coalismalismalismalismal-mod-mod-modal-modal-mod-mod-cod-cod-mod-mod-mod-mod-modal-modal-modal-mod-mod-mod-modal-modal-mocal-modal-mocal-modal-mod-modal-mod-mo-mod-mod-mo-mo-mod-mo-mo-mo-mod-mocal-mod-mocal-mocal-mocal-mocal-mocal-mocal-mocal

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月15日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员