For reconstructing large tomographic datasets fast, filtered backprojection-type or Fourier-based algorithms are still the method of choice, as they have been for decades. These robust and computationally efficient algorithms have been integrated in a broad range of software packages. The continuous mathematical formulas used for image reconstruction in such algorithms are unambiguous. However, variations in discretisation and interpolation result in quantitative differences between reconstructed images, and corresponding segmentations, obtained from different software. This hinders reproducibility of experimental results, making it difficult to ensure that results and conclusions from experiments can be reproduced at different facilities or using different software. In this paper, we propose a way to reduce such differences by optimising the filter used in analytical algorithms. These filters can be computed using a wrapper routine around a black-box implementation of a reconstruction algorithm, and lead to quantitatively similar reconstructions. We demonstrate use cases for our approach by computing implementation-adapted filters for several open-source implementations and applying it to simulated phantoms and real-world data acquired at the synchrotron. Our contribution to a reproducible reconstruction step forms a building block towards a fully reproducible synchrotron tomography data processing pipeline.


翻译:快速重建大型成像数据集、过滤后回射类型或基于Fourier的算法,与几十年一样,仍然是选择的方法。这些稳健和计算高效的算法已经纳入广泛的软件包。用于在这种算法中重建图像的连续数学公式是明确的。然而,离散和内插的变化导致从不同软件获得的重建图像和相应的分块之间的数量差异。这阻碍了实验结果的再复制,因此难以确保实验的结果和结论能够在不同的设施或使用不同的软件复制。在本文中,我们建议了一种方法,通过优化分析算法中使用的过滤器来减少这种差异。这些过滤器可以使用黑盒执行重建算法的包装程序来计算,并导致数量上类似的重建。我们展示了使用我们的方法的例子,即为若干开源的实施计算适应的过滤器,并将它应用到模拟的幽灵门和在同步器中获取的现实世界数据。我们对于同步器中进行同步的重建的贡献。我们对于一个完全可复制的同步的导路段步骤,我们为一个可重新构建一个同步的导路段。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
1+阅读 · 2021年10月20日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
3+阅读 · 2020年7月16日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员