Entropy metrics (for example, permutation entropy) are nonlinear measures of irregularity in time series (one-dimensional data). Some of these entropy metrics can be generalised to data on periodic structures such as a grid or lattice pattern (two-dimensional data) using its symmetry, thus enabling their application to images. However, these metrics have not been developed for signals sampled on irregular domains, defined by a graph. Here, we define for the first time an entropy metric to analyse signals measured over irregular graphs by generalising permutation entropy, a well-established nonlinear metric based on the comparison of neighbouring values within patterns in a time series. Our algorithm is based on comparing signal values on neighbouring nodes, using the adjacency matrix. We show that this generalisation preserves the properties of classical permutation for time series and the recent permutation entropy for images, and it can be applied to any graph structure with synthetic and real signals. We expect the present work to enable the extension of other nonlinear dynamic approaches to graph signals.
翻译:Entropy 量度(例如,mutation entropy)是时间序列(一维数据)中非线性不规则性测量(一维数据) 。 部分这些 entropy 量度可以使用对称法, 用于定期结构的数据, 如网格或 lattice 模式( 两维数据), 从而使其能够应用于图像 。 然而, 这些量度没有为在非常规域取样的信号开发, 由图表定义 。 这里, 我们第一次定义了一种 entropy 度量度, 用来分析通过对时间序列内模式内相邻值的比较而测量的不规则性图形的信号。 我们的算法基于对相邻节点上的信号值的比较, 使用对称矩阵 。 我们显示, 这种总度能保留时间序列的经典变异性特性, 以及图像的最近变异性变异性, 并且可以用合成和真实信号应用于任何图形结构。 我们期望目前的工作能够将其他非线性动态方法扩展到图形信号中 。