Graph kernels are conventional methods for computing graph similarities. However, most of the R-convolution graph kernels face two challenges: 1) They cannot compare graphs at multiple different scales, and 2) they do not consider the distributions of substructures when computing the kernel matrix. These two challenges limit their performances. To mitigate the two challenges, we propose a novel graph kernel called the Multi-scale Path-pattern Graph kernel (MPG), at the heart of which is the multi-scale path-pattern node feature map. Each element of the path-pattern node feature map is the number of occurrences of a path-pattern around a node. A path-pattern is constructed by the concatenation of all the node labels in a path of a truncated BFS tree rooted at each node. Since the path-pattern node feature map can only compare graphs at local scales, we incorporate into it the multiple different scales of the graph structure, which are captured by the truncated BFS trees of different depth. We use the Wasserstein distance to compute the similarity between the multi-scale path-pattern node feature maps of two graphs, considering the distributions of path-patterns. We empirically validate MPG on various benchmark graph datasets and demonstrate that it achieves state-of-the-art performance.
翻译:图形内核是计算图形相似性的常规方法。 然而, 革命图形内核大多面临两个挑战:(1) 它们无法在多个不同尺度上比较图表, 2 它们在计算内核矩阵时不考虑子结构的分布。 这两个挑战限制了它们的性能。 为了缓解这两个挑战, 我们提议了一个新的图形内核, 称为多尺度路径式路径式节点图内核( MPG MPG ), 其核心是多比例式路径式节点特征地图。 路径式节点图的每个元素都是节点周围路径式路径模式的发生次数。 路径式模式在计算内核矩阵矩阵矩阵矩阵时不考虑子矩阵结构的分布。 由位于每个节点的加固型 BFS 树路径路径路径中的所有节点标签的配置来构建路径模式。 由于路径- 路径式节点节点图只能比较本地尺度上的图表, 我们将不同深度的 BFS 方向图所采集的多个不同尺度结构。 我们用瓦列斯特斯坦式路径图的距离来测量不同比例式路径的路径图。