Graph kernels are conventional methods for computing graph similarities. However, most of the R-convolution graph kernels face two challenges: 1) They cannot compare graphs at multiple different scales, and 2) they do not consider the distributions of substructures when computing the kernel matrix. These two challenges limit their performances. To mitigate the two challenges, we propose a novel graph kernel called the Multi-scale Path-pattern Graph kernel (MPG), at the heart of which is the multi-scale path-pattern node feature map. Each element of the path-pattern node feature map is the number of occurrences of a path-pattern around a node. A path-pattern is constructed by the concatenation of all the node labels in a path of a truncated BFS tree rooted at each node. Since the path-pattern node feature map can only compare graphs at local scales, we incorporate into it the multiple different scales of the graph structure, which are captured by the truncated BFS trees of different depth. We use the Wasserstein distance to compute the similarity between the multi-scale path-pattern node feature maps of two graphs, considering the distributions of path-patterns. We empirically validate MPG on various benchmark graph datasets and demonstrate that it achieves state-of-the-art performance.


翻译:图形内核是计算图形相似性的常规方法。 然而, 革命图形内核大多面临两个挑战:(1) 它们无法在多个不同尺度上比较图表, 2 它们在计算内核矩阵时不考虑子结构的分布。 这两个挑战限制了它们的性能。 为了缓解这两个挑战, 我们提议了一个新的图形内核, 称为多尺度路径式路径式节点图内核( MPG MPG ), 其核心是多比例式路径式节点特征地图。 路径式节点图的每个元素都是节点周围路径式路径模式的发生次数。 路径式模式在计算内核矩阵矩阵矩阵矩阵时不考虑子矩阵结构的分布。 由位于每个节点的加固型 BFS 树路径路径路径中的所有节点标签的配置来构建路径模式。 由于路径- 路径式节点节点图只能比较本地尺度上的图表, 我们将不同深度的 BFS 方向图所采集的多个不同尺度结构。 我们用瓦列斯特斯坦式路径图的距离来测量不同比例式路径的路径图。

0
下载
关闭预览

相关内容

专知会员服务
58+阅读 · 2021年4月29日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
29+阅读 · 2018年4月6日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员