This work proposes a Stochastic Variational Deep Kernel Learning method for the data-driven discovery of low-dimensional dynamical models from high-dimensional noisy data. The framework is composed of an encoder that compresses high-dimensional measurements into low-dimensional state variables, and a latent dynamical model for the state variables that predicts the system evolution over time. The training of the proposed model is carried out in an unsupervised manner, i.e., not relying on labeled data. Our learning method is evaluated on the motion of a pendulum -- a well studied baseline for nonlinear model identification and control with continuous states and control inputs -- measured via high-dimensional noisy RGB images. Results show that the method can effectively denoise measurements, learn compact state representations and latent dynamical models, as well as identify and quantify modeling uncertainties.
翻译:这项工作提出了一种由数据驱动的低维动态模型从高维噪音数据中发现数据驱动的蒸发式深内核学习方法。 框架由将高维测量压缩成低维状态变量的编码器和预测系统随时间演变的状态变量的潜在动态模型组成。 对拟议模型的培训以不受监督的方式进行,即不依赖标签数据。 我们的学习方法根据一个钟摆的动作进行评估,这是经过仔细研究的、通过高维振动 RGB 图像测量的非线性模型识别和控制基线,通过连续状态和控制输入进行测量。 结果显示,该方法能够有效地进行嵌化测量,学习紧凑状态的表示和潜在动态模型,以及确定和量化模型的不确定性。