We consider a new form of reinforcement learning (RL) that is based on opportunities to directly learn the optimal control policy and a general Markov decision process (MDP) framework devised to support these opportunities. Derivations of general classes of our control-based RL methods are presented, together with forms of exploration and exploitation in learning and applying the optimal control policy over time. Our general MDP framework extends the classical Bellman operator and optimality criteria by generalizing the definition and scope of a policy for any given state. We establish the convergence and optimality-both in general and within various control paradigms (e.g., piecewise linear control policies)-of our control-based methods through this general MDP framework, including convergence of $Q$-learning within the context of our MDP framework. Our empirical results demonstrate and quantify the significant benefits of our approach.


翻译:我们考虑一种新的强化学习形式(RL),其基础是有机会直接学习最佳控制政策和为支持这些机会而设计的通用马尔科夫决策程序(MDP)框架,介绍了我们基于控制RL方法的一般类别,以及学习和适用最佳控制政策方面的探索和开发形式,我们的一般MDP框架通过概括任何特定国家的政策定义和范围,扩展了传统的贝尔曼操作员和最佳标准。我们通过这一总体的控制模式(例如,零星线性控制政策)和各种控制模式(例如,零星线性控制政策),确定了我们基于控制的方法的总体趋同和最佳性,包括通过我们的MDP框架内的 " Q " 学习趋同。我们的经验结果表明并量化了我们方法的重大效益。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员