Saliency is the perceptual capacity of our visual system to focus our attention (i.e. gaze) on relevant objects. Neural networks for saliency estimation require ground truth saliency maps for training which are usually achieved via eyetracking experiments. In the current paper, we demonstrate that saliency maps can be generated as a side-effect of training an object recognition deep neural network that is endowed with a saliency branch. Such a network does not require any ground-truth saliency maps for training.Extensive experiments carried out on both real and synthetic saliency datasets demonstrate that our approach is able to generate accurate saliency maps, achieving competitive results on both synthetic and real datasets when compared to methods that do require ground truth data.
翻译:我们的视觉系统具有将注意力(即凝视)集中在相关物体上的感知能力。为进行显著估计,神经网络需要地面的真相突出的训练地图,通常通过目视跟踪实验实现。在本文件中,我们证明突出的地图可以作为训练对象识别深神经网络的副作用产生,而该天体识别网络具有显著的分枝。这样的网络不需要任何地面显著的培训地图。在真实和合成的突出数据集上进行的广泛实验表明,我们的方法能够产生准确的突出地图,在合成和真实数据集方面取得竞争性的结果,而与需要地面真实数据的方法相比。