Thirty years ago, I introduced a non-commutative variant of classical linear logic, called "pomset logic", issued from a particular categorical interpretation of linear logic known as coherence spaces. In addition to the usual commutative multiplicative connectives of linear logic, pomset logic includes a non-commutative connective, "$\triangleleft$" called "before", associative and self-dual: $(A\triangleleft B)^\perp=A^\perp \triangleleft B^\perp$. The conclusion of a pomset logic proof is a Partially Ordered MultiSET of formulas. Pomset logic enjoys a proof net calculus with cut-elimination, denotational semantics, and faithfully embeds sequent calculus. The study of pomset logic has reopened with recent results on handsome proof nets, on its sequent calculus, or on its following calculi like deep inference by Guglielmi and Strassburger. Therefore, it is high time we published a thorough presentation of pomset logic, including published and unpublished material, old and new results. Pomset logic (1993) is a non-commutative variant of linear logic (1987) as for Lambek calculus (1958!) and it can also be used as a grammatical formalism. Those two calculi are quite different, but we hope that the algebraic presentation we give here, with formulas as algebraic terms and with a semantic notion of proof (net) correctness, better matches Lambek's view of what a logic should be.
翻译:30年前,我引入了一个非正统的经典线性逻辑变体,称为“pomset 逻辑 ”, 由对所谓一致性空间的线性逻辑的绝对解释而发布。除了通常的线性逻辑的折叠式多复制性连接外, pomset逻辑还包括一个非混合的连接, “$\trianglefleft$ ”, “freed”, “friend B” 和“selperp” = A ⁇ perp\ trangleflet B ⁇ perp$。 包式逻辑证明的结论是一个部分有序的公式多SET。 Pomset逻辑享有一个带有切除性、分解性等线性逻辑的验证网性线性线性计算, 并忠实地嵌入序列性计算。 包罗的逻辑性逻辑研究已经重新审视了“ ” ( $( A\ tranglefleftleftlefle), 或“ Strasburger ” 。 因此, 我们出版的“ralal laudal latial ” oral oral oralal 和“balliversal ” latical latical ) 解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性(19级的逻辑性逻辑, ), ),, 和“balticalticalbaltialtial-calbalticaltical-caltical),, ladalbalbalbalbalbalbalbalbalbalbalbal ladalbalbalbalbal labalbal labal labal ladal labal,, ladalbalbalbalbalbal labal labal labal labal labal labal labal labal labalbal labal labalbalbalbalbal labalbal, labal