We identify "values" as actions that classifiers take that speak to open questions of significant social concern. Investigating a classifier's values builds on studies of social bias that uncover how classifiers participate in social processes beyond their creators' forethought. In our case, this participation involves what counts as nutritious, what it means to be modest, and more. Unlike AI social bias, however, a classifier's values are not necessarily morally loathsome. Attending to image classifiers' values can facilitate public debate and introspection about the future of society. To substantiate these claims, we report on an extensive examination of both ImageNet training/validation data and ImageNet-trained classifiers with custom testing data. We identify perceptual decision boundaries in 118 categories that address open questions in society, and through quantitative testing of rival datasets we find that ImageNet-trained classifiers enact at least 7 values through their perceptual decisions. To contextualize these results, we develop a conceptual framework that integrates values, social bias, and accuracy, and we describe a rhetorical method for identifying how context affects the values that a classifier enacts. We also discover that classifier performance does not straightforwardly reflect the proportions of subgroups in a training set. Our findings bring a rich sense of the social world to ML researchers that can be applied to other domains beyond computer vision.
翻译:暂无翻译