Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs), often subjectively perceived as sleepiness. Their main characteristic is a slowing in frequency in the electroencephalogram (EEG), similar to stage N1 sleep according to standard criteria. The maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance. Scoring of the MWT in most sleep-wake centers is limited to classical definition of sleep (30-s epochs), and MSEs are mostly not considered in the absence of established scoring criteria defining MSEs but also because of the laborious work. We aimed for automatic detection of MSEs with machine learning, i.e. with deep learning based on raw EEG and EOG data as input. We analyzed MWT data of 76 patients. Experts visually scored wakefulness, and according to recently developed scoring criteria MSEs, microsleep episode candidates (MSEc), and episodes of drowsiness (ED). We implemented segmentation algorithms based on convolutional neural networks (CNNs) and a combination of a CNN with a long-short term memory (LSTM) network. A LSTM network is a type of a recurrent neural network which has a memory for past events and takes them into account. Data of 53 patients were used for training of the classifiers, 12 for validation and 11 for testing. Our algorithms showed a good performance close to human experts. The detection was very good for wakefulness and MSEs and poor for MSEc and ED, similar to the low inter-expert reliability for these borderline segments. We provide a proof of principle that it is feasible to reliably detect MSEs with deep neuronal networks based on raw EEG and EOG data with a performance close to that of human experts. Code of algorithms ( https://github.com/alexander-malafeev/microsleep-detection ) and data ( https://zenodo.org/record/3251716 ) are available.


翻译:睡眠短于15秒的短暂睡眠片段被定义为微型睡眠片段(MSE),通常被主观地认为是睡眠,其主要特征是电子脑图(EEG)的频率放缓,类似于标准标准值的N1级睡眠。保持觉醒测试(MWT)经常用于临床环境以评估警惕性。在大多数睡眠觉中心进行MWT的评分仅限于睡眠的经典定义(30-sepachs),而MSESE大多没有被考虑,因为没有固定的评分标准来定义 MESes(MSEE),而且由于工作繁重。我们的目标是通过机器学习,即基于原始 EEEEG和EOG数据的深度学习,自动检测MS的频率。我们分析了76个病人的MWT数据。 专家目光化的觉醒悟性,根据最近制定的评分标准(MSEc),微型睡眠片选人(MSEc),以及潜伏(EDR5)的分解算法大多没有被考虑。 我们的神经网(CN-S)的深度测测算, 用于长期的智能网络的正常数据流流数据, 用于运行的网络。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
116+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年4月26日
Learning Memory-guided Normality for Anomaly Detection
Arxiv
12+阅读 · 2019年3月14日
Arxiv
6+阅读 · 2018年12月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
0+阅读 · 2021年4月26日
Learning Memory-guided Normality for Anomaly Detection
Arxiv
12+阅读 · 2019年3月14日
Arxiv
6+阅读 · 2018年12月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Top
微信扫码咨询专知VIP会员