The network Quality of Service (QoS) metrics such as the access time, the bandwidth, and the packet loss play an important role in determining the Quality of Experience (QoE) of mobile applications. Various factors like the Radio Resource Control (RRC) states, the Mobile Network Operator (MNO) specific retransmission configurations, handovers triggered by the user mobility, the network load, etc. can cause high variability in these QoS metrics on 4G/LTE, and WiFi networks, which can be detrimental to the application QoE. Therefore, exposing the mobile application to realistic network QoS metrics is critical for a tester attempting to predict its QoE. A viable approach is testing using synthetic traces. The main challenge in the generation of realistic synthetic traces is the diversity of environments and the lack of wide scope of real traces to calibrate the generators. In this paper, we describe a measurement-driven methodology based on transfer learning with Long Short Term Memory (LSTM) neural nets to solve this problem. The methodology requires a relatively short sample of the targeted environment to adapt the presented basic model to new environments, thus simplifying synthetic traces generation. We present this feature for realistic WiFi and LTE cloud access time models adapted for diverse target environments with a trace size of just 6000 samples measured over a few tens of minutes. We demonstrate that synthetic traces generated from these models are capable of accurately reproducing application QoE metric distributions including their outlier values.


翻译:网络服务质量(Qos)指标,如接入时间、带宽和包丢失等,在确定移动应用程序的经验质量(QoE)方面起着重要作用。无线电资源控制(RRC)州、移动网络操作员(MNO)具体的再传输配置、用户流动性引发的移交、网络负荷等各种网络服务质量(QoS)指标,可导致4G/LTE和WiFi网络的这些QoS指标的高度变异性,这可能会损害应用QoE。 因此,将移动应用程序暴露在现实网络的QoS标准(QoE)中对于试图预测其QoE的测试者至关重要。一个可行的方法是利用合成痕迹测试。 产生现实合成合成痕迹的主要挑战是环境的多样性和缺乏校正发电机的真正痕迹。 在本文中,我们描述了一种基于与长期短期记忆(LSTM)神经网的传输学习来解决这个问题的计量驱动模型。 这种方法需要相对较短的定向环境样本,包括能测量的60分钟基本合成模型,以调整我们所测量的合成模型的原始模型,从而将这种合成模型转化为新的历史环境。

1
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2019年6月5日
Arxiv
13+阅读 · 2019年1月26日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员