GraphSPME is an open source Python, R and C++ header-only package implement-ing non-parametric sparse precision matrix estimation along with asymptotic Stein-type shrinkage estimation of the covariance matrix. The user defines a potential neighbourhood structure and provides data that potentially are p >> n. This paper introduces a novel approach for finding the optimal order (that data allows to estimate) of a potential Markov property. The algorithm is implemented in the package, alleviating the problem of users making Markov assumptions and implementing corresponding complex higher-order neighbourhood structures. Estimation is made accurate and stable by simultaneously utilising both Markov properties and Stein-type shrinkage. Asymptotic results on Stein-type shrinkage ensure that non-singular well conditioned matrices are obtained in an automatic manner. Final symmetry conversion creates symmetric positive definite estimates. Furthermore, the estimation routine is made efficient and scalable to very high-dimensional problems (~10^7) by utilising the sparse nature of the precision matrix under Markov assumptions. Implementation wise, the sparsity is exploited by employing the sparsity possibilities made available by the Eigen C++ linear-algebra library. The package and examples are available at https://github.com/equinor/GraphSPME
翻译:图形SPME 是一个开放源代码 Python、 R 和 C++ 信头的软件包, 开放源代码 Python、 R 和 C++ 信头软件, 执行非参数性稀小精密矩阵估算, 同时使用Markov 特性和斯坦型缩缩缩缩图, 使Estimature 的结果准确和稳定。 用户定义潜在的邻里结构, 并提供潜在的数据 p {{{{{{{{{{} n} 。 本文介绍了寻找潜在Markov 属性的最佳顺序( 数据允许估算) 的新办法。 算法在软件包中实施, 缓解用户在Markov 假设下设定的Markov 假设和 Stein- tyle type 缩表同时使用非参数性精确矩阵的问题。 在Stestein- ty- 类型缩微缩图中, ASMARB/ IMRAV 中, 的缩略图通过使用 Exbragrual imal eximal imposal astionsal 。