GraphSPME is an open source Python, R and C++ header-only package implement-ing non-parametric sparse precision matrix estimation along with asymptotic Stein-type shrinkage estimation of the covariance matrix. The user defines a potential neighbourhood structure and provides data that potentially are p >> n. This paper introduces a novel approach for finding the optimal order (that data allows to estimate) of a potential Markov property. The algorithm is implemented in the package, alleviating the problem of users making Markov assumptions and implementing corresponding complex higher-order neighbourhood structures. Estimation is made accurate and stable by simultaneously utilising both Markov properties and Stein-type shrinkage. Asymptotic results on Stein-type shrinkage ensure that non-singular well conditioned matrices are obtained in an automatic manner. Final symmetry conversion creates symmetric positive definite estimates. Furthermore, the estimation routine is made efficient and scalable to very high-dimensional problems (~10^7) by utilising the sparse nature of the precision matrix under Markov assumptions. Implementation wise, the sparsity is exploited by employing the sparsity possibilities made available by the Eigen C++ linear-algebra library. The package and examples are available at https://github.com/equinor/GraphSPME


翻译:图形SPME 是一个开放源代码 Python、 R 和 C++ 信头的软件包, 开放源代码 Python、 R 和 C++ 信头软件, 执行非参数性稀小精密矩阵估算, 同时使用Markov 特性和斯坦型缩缩缩缩图, 使Estimature 的结果准确和稳定。 用户定义潜在的邻里结构, 并提供潜在的数据 p {{{{{{{{{{} n} 。 本文介绍了寻找潜在Markov 属性的最佳顺序( 数据允许估算) 的新办法。 算法在软件包中实施, 缓解用户在Markov 假设下设定的Markov 假设和 Stein- tyle type 缩表同时使用非参数性精确矩阵的问题。 在Stestein- ty- 类型缩微缩图中, ASMARB/ IMRAV 中, 的缩略图通过使用 Exbragrual imal eximal imposal astionsal 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月4日
Arxiv
0+阅读 · 2022年7月1日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员