Graph convolutional networks (GCNs) are a widely used method for graph representation learning. We investigate the power of GCNs, as a function of their number of layers, to distinguish between different random graph models on the basis of the embeddings of their sample graphs. In particular, the graph models that we consider arise from graphons, which are the most general possible parameterizations of infinite exchangeable graph models and which are the central objects of study in the theory of dense graph limits. We exhibit an infinite class of graphons that are well-separated in terms of cut distance and are indistinguishable by a GCN with nonlinear activation functions coming from a certain broad class if its depth is at least logarithmic in the size of the sample graph, and furthermore show that, for this application, ReLU activation functions and non-identity weight matrices with non-negative entries do not help in terms of distinguishing power. These results theoretically match empirical observations of several prior works. Finally, we show that for pairs of graphons satisfying a degree profile separation property, a very simple GCN architecture suffices for distinguishability. To prove our results, we exploit a connection to random walks on graphs.


翻译:图形化的图象网络(GCNs)是一种广泛使用的图形代表学习方法。我们调查了GCNs的力量,这是其层数的函数,以便根据样品图的嵌入情况区分不同的随机图形模型。特别是,我们所考虑的图形模型来自图形,这是无限可交换的图形模型的最一般可能的参数,也是密度图形限制理论中研究的中心对象。我们展示了无限的图解种类,这些图解在缩小距离方面是完全分离的,并且无法分辨的,由具有非线性激活功能的GCN从某一大类中产生,如果其深度在样本图的大小中至少是对数,则从中区分不同的图解。我们还要进一步表明,对于这一应用,RELU的激活功能和与非负性图谱条目的非身份权重矩阵在分辨能力方面没有帮助。这些结果在理论上与先前若干作品的经验观测结果相匹配。最后,我们显示,对于符合度剖析属性的几组图形来说,一个非常简单的GCN结构足以进行分辨。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员