Autoregressive sequence Generation models have achieved state-of-the-art performance in areas like machine translation and image captioning. These models are autoregressive in that they generate each word by conditioning on previously generated words, which leads to heavy latency during inference. Recently, non-autoregressive decoding has been proposed in machine translation to speed up the inference time by generating all words in parallel. Typically, these models use the word-level cross-entropy loss to optimize each word independently. However, such a learning process fails to consider the sentence-level consistency, thus resulting in inferior generation quality of these non-autoregressive models. In this paper, we propose a simple and efficient model for Non-Autoregressive sequence Generation (NAG) with a novel training paradigm: Counterfactuals-critical Multi-Agent Learning (CMAL). CMAL formulates NAG as a multi-agent reinforcement learning system where element positions in the target sequence are viewed as agents that learn to cooperatively maximize a sentence-level reward. On MSCOCO image captioning benchmark, our NAG method achieves a performance comparable to state-of-the-art autoregressive models, while brings 13.9x decoding speedup. On WMT14 EN-DE machine translation dataset, our method outperforms cross-entropy trained baseline by 6.0 BLEU points while achieves the greatest decoding speedup of 17.46x.


翻译:自动递增序列 生成模型在机器翻译和图像字幕等领域达到了最先进的性能。 这些模型具有自递增性, 因为它们通过对先前生成的单词进行调制, 产生每个单词, 从而导致在推断过程中出现严重延迟。 最近, 在机器翻译中提出了非自动递减解码, 以通过平行生成所有单词来加快推导时间。 典型地, 这些模型使用字级跨物种流失来独立优化每个单词。 然而, 这种学习过程没有考虑到判决水平的一致性, 从而导致这些非自动递增模式的生成质量不高。 在本文中, 我们提出了一个简单有效的非自动递增序列生成模式(NAG) 。 最近, 在机器翻译过程中, 非自动递增的解调解密模式( CMAL) 。 CMAL 将 NAG 设计成一个多剂强化学习系统, 其中将目标序列中的元素位置视为合作最大化判决级奖赏的代理。 在 MICO 描述这些非自动递增制模型的代号上, 我们的NAG- 9 方法在通过自我递增速度方法实现最大幅度的自动递增的系统。

0
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
13+阅读 · 2019年1月26日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员