Diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of permanent blindness in the working-age population. Automatic grading of DR and DME helps ophthalmologists design tailored treatments to patients, thus is of vital importance in the clinical practice. However, prior works either grade DR or DME, and ignore the correlation between DR and its complication, i.e., DME. Moreover, the location information, e.g., macula and soft hard exhaust annotations, are widely used as a prior for grading. Such annotations are costly to obtain, hence it is desirable to develop automatic grading methods with only image-level supervision. In this paper, we present a novel cross-disease attention network (CANet) to jointly grade DR and DME by exploring the internal relationship between the diseases with only image-level supervision. Our key contributions include the disease-specific attention module to selectively learn useful features for individual diseases, and the disease-dependent attention module to further capture the internal relationship between the two diseases. We integrate these two attention modules in a deep network to produce disease-specific and disease-dependent features, and to maximize the overall performance jointly for grading DR and DME. We evaluate our network on two public benchmark datasets, i.e., ISBI 2018 IDRiD challenge dataset and Messidor dataset. Our method achieves the best result on the ISBI 2018 IDRiD challenge dataset and outperforms other methods on the Messidor dataset. Our code is publicly available at https://github.com/xmengli999/CANet.
翻译:诊断性视网膜病(DDR)和糖尿病肿瘤血肿(DME)是工作年龄人口长期失明的主要原因。DR和DME的自动分级有助于眼科医生设计针对病人的定制治疗方法,因此在临床实践中至关重要。但是,先前的工作要么是DR,要么是DME,忽视DR及其并发症(即DME)之间的相互关系。此外,地点信息,例如MAcula和软硬性硬性排气说明,被广泛用作工作年龄人口进行分级之前的主要原因。这些说明是昂贵的,因此,DRD和DME的自动分级方法有助于对眼科医生设计针对病人的定制治疗方法。我们通过探索DRD和DME之间的内部关系,只对DR或DME进行图像级别监督。我们的主要贡献包括有选择性地学习个人疾病有用特征的疾病特定关注模块,以及进一步捕捉两种疾病之间内部关系的基于疾病的挑战模块。我们在深度网络上将这两个关于IBERM/挑战的注意模块模块中的两个模块整合到只有图像级的自动定位方法,我们的公共数据(DRDR)生成数据。我们的数据的具体数据和基准数据。我们的数据。我们的数据和共同的运行中的数据基点数据,我们的数据和数据基比比。