Over-smoothing is a challenging problem, which degrades the performance of deep graph convolutional networks (GCNs). However, existing studies for alleviating the over-smoothing problem lack either generality or effectiveness. In this paper, we analyze the underlying issues behind the over-smoothing problem, i.e., feature-diversity degeneration, gradient vanishing, and model weights over-decaying. Inspired by this, we propose a simple yet effective plug-and-play module, SkipNode, to alleviate over-smoothing. Specifically, for each middle layer of a GCN model, SkipNode randomly (or based on node degree) selects nodes to skip the convolutional operation by directly feeding their input features to the nonlinear function. Analytically, 1) skipping the convolutional operation prevents the features from losing diversity; and 2) the "skipped" nodes enable gradients to be directly passed back, thus mitigating the gradient vanishing and model weights over-decaying issues. To demonstrate the superiority of SkipNode, we conduct extensive experiments on nine popular datasets, including both homophilic and heterophilic graphs, with different graph sizes on two typical tasks: node classification and link prediction. Specifically, 1) SkipNode has strong generalizability of being applied to various GCN-based models on different datasets and tasks; and 2) SkipNode outperforms recent state-of-the-art anti-over-smoothing plug-and-play modules, i.e., DropEdge and DropNode, in different settings. Code will be made publicly available on GitHub.


翻译:过度悬浮是一个具有挑战性的问题,它会降低深图形滚动模块(GCNs)的性能。然而,现有的缓解过度悬浮问题的研究缺乏普遍性或有效性。在本文中,我们分析过度悬浮问题背后的根本问题,即地谱多样性变异、梯度消失和模型重量过低。受此启发,我们提议了一个简单而有效的插头和游戏模块(SkippNode),以缓解过度悬浮。具体来说,对于GCN模型的每个中间层,SkippNode随机(或基于节度)选择节点,通过直接将其输入功能输入非线性功能来跳过卷动操作。分析中,1 跳过变动操作防止其特性丧失多样性;2 “ 悬浮” 节点使梯度能够直接回溯过去, 从而减轻梯度消失和模型过缓冲的反衰减问题。 为了显示 SkideNodeNode(或以节度为基础) 的每个中间层结构,我们最近没有对GILS- dal 进行广泛的实验, II 和Skinal- dal- sligal- dal- sal-ligal- sal-lible) ladeal- sal- sliver 和两个任务都使用了不同的图表。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
19+阅读 · 2021年2月4日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
19+阅读 · 2021年2月4日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
29+阅读 · 2018年4月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员