Manifold learning (ML), known also as non-linear dimension reduction, is a set of methods to find the low dimensional structure of data. Dimension reduction for large, high dimensional data is not merely a way to reduce the data; the new representations and descriptors obtained by ML reveal the geometric shape of high dimensional point clouds, and allow one to visualize, de-noise and interpret them. This survey presents the principles underlying ML, the representative methods, as well as their statistical foundations from a practicing statistician's perspective. It describes the trade-offs, and what theory tells us about the parameter and algorithmic choices we make in order to obtain reliable conclusions.
翻译:暂无翻译