In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge-Kantorovich equations, a PDE formulation of the optimal transport problem with cost equal to the geodesic distance. Combining this result with an optimal transport numerical solver based on the so-called dynamical Monge-Kantorovich approach, we propose a novel framework for the numerical approximation of the cut locus of a point in a manifold. We show the applicability of the proposed method on a few examples settled on 2d-surfaces embedded in $R^{3}$ and discuss advantages and limitations.


翻译:在本文中,我们对紧凑的里伊曼式方块的一个点的临界点作了新的定性,作为蒙古-坎托罗维奇方程式最佳运输密度解决方案的零一组,这是对最佳运输问题的PDE公式,其成本与大地测量距离相等。将这一结果与基于所谓的动态蒙古-坎托罗维奇方法的最佳运输数字求解器结合起来,我们提出了一个新的框架,用于将一个点的截断点的数值近似。我们展示了拟议方法对嵌入2度地表的几例实例的适用性,并讨论了优缺点和局限性。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
已删除
将门创投
5+阅读 · 2019年4月29日
iOS自定义带动画效果的模态框
CocoaChina
7+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
An Optimal Transport Approach to Causal Inference
Arxiv
0+阅读 · 2021年8月12日
Arxiv
0+阅读 · 2021年8月12日
Arxiv
0+阅读 · 2021年8月10日
Arxiv
0+阅读 · 2021年8月10日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
相关资讯
已删除
将门创投
5+阅读 · 2019年4月29日
iOS自定义带动画效果的模态框
CocoaChina
7+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员