We study the problem of learning a Hamiltonian $H$ to precision $\varepsilon$, supposing we are given copies of its Gibbs state $\rho=\exp(-\beta H)/\operatorname{Tr}(\exp(-\beta H))$ at a known inverse temperature $\beta$. Anshu, Arunachalam, Kuwahara, and Soleimanifar (Nature Physics, 2021) recently studied the sample complexity (number of copies of $\rho$ needed) of this problem for geometrically local $N$-qubit Hamiltonians. In the high-temperature (low $\beta$) regime, their algorithm has sample complexity poly$(N, 1/\beta,1/\varepsilon)$ and can be implemented with polynomial, but suboptimal, time complexity. In this paper, we study the same question for a more general class of Hamiltonians. We show how to learn the coefficients of a Hamiltonian to error $\varepsilon$ with sample complexity $S = O(\log N/(\beta\varepsilon)^{2})$ and time complexity linear in the sample size, $O(S N)$. Furthermore, we prove a matching lower bound showing that our algorithm's sample complexity is optimal, and hence our time complexity is also optimal. In the appendix, we show that virtually the same algorithm can be used to learn $H$ from a real-time evolution unitary $e^{-it H}$ in a small $t$ regime with similar sample and time complexity.
翻译:我们研究的是 汉密尔顿 $H$ 的学习问题,以精确地计算 $varepsilon 美元,假设我们得到了Gibbs State $\ rho ⁇ ex(-beta H)/\operatorname{Tr} (\\ ex(-beta H))$,以已知的反温 $\beeta美元。安苏、阿鲁纳沙拉姆、库瓦哈拉和苏莱曼尼法(自然物理,2021年) 的学习问题的复杂性(需要美元), 以几何方美元为当地汉密尔顿人。 在高温( 低$\ beta H) 系统中, 他们的算法具有样本复杂性 IP$( N, 1/beta,1/ vareta, 1/ varepslislacelal) 。 在本文中,我们为更普通的汉密尔密尔顿人研究同样的问题。我们展示如何从汉密尔顿到错误的系数 $\ varepsiontium $; 在样本中, rent reclation roqlation roqlate roqual rolation roqualtime roduducle rocle roducelexal roducelexal roducelex roducelex