Convolutional Neural Network (CNN) has an amount of parameter redundancy, filter pruning aims to remove the redundant filters and provides the possibility for the application of CNN on terminal devices. However, previous works pay more attention to designing evaluation criteria of filter importance and then prune less important filters with a fixed pruning rate or a fixed number to reduce convolutional neural networks' redundancy. It does not consider how many filters to reserve for each layer is the most reasonable choice. From this perspective, we propose a new filter pruning method by searching the proper number of filters (SNF). SNF is dedicated to searching for the most reasonable number of reserved filters for each layer and then pruning filters with specific criteria. It can tailor the most suitable network structure at different FLOPs. Filter pruning with our method leads to the state-of-the-art (SOTA) accuracy on CIFAR-10 and achieves competitive performance on ImageNet ILSVRC-2012.SNF based on the ResNet-56 network achieves an increase of 0.14% in Top-1 accuracy at 52.94% FLOPs reduction on CIFAR-10. Pruning ResNet-110 on CIFAR-10 also improves the Top-1 accuracy of 0.03% when reducing 68.68% FLOPs. For ImageNet, we set the pruning rates as 52.10% FLOPs, and the Top-1 accuracy only has a drop of 0.74%. The codes can be available at https://github.com/pk-l/SNF.
翻译:常规神经网络(CNN) 具有大量的参数冗余, 过滤器运行旨在删除多余的过滤器, 并提供在终端设备上应用CNN的可能性。 但是, 先前的工作更加关注设计过滤器重要性的评价标准, 然后用固定的修剪率或固定数字来淡化不太重要的过滤器, 以减少神经网络的冗余。 它不考虑为每个层保留多少过滤器是最合理的选择 。 从这个角度出发, 我们通过搜索适当数量的过滤器( SNF), 提出一个新的过滤处理方法 。 SNF 致力于为每个层搜索最合理的保留过滤器数量, 然后用具体标准来剪裁过滤器的重要性, 然后用固定的修剪裁率或固定数字来淡掉最合适的过滤器过滤器 。 过滤器将 CIRFAR- 10 (S) 的精度提升到图像网络 IMLSVRC- 2012. SNFNF 根据ResNet-56 网络, 在52.94% 的顶端精确度上增加0. 14 % FLOP- FPRO- 降低 CIRPR% FRRM- 。 在 CRAR-10 设置上, 降低 的FAR- 的FARPRR- 。