Document-level relation extraction (RE) aims to identify the relations between entities throughout an entire document. It needs complex reasoning skills to synthesize various knowledge such as coreferences and commonsense. Large-scale knowledge graphs (KGs) contain a wealth of real-world facts, and can provide valuable knowledge to document-level RE. In this paper, we propose an entity knowledge injection framework to enhance current document-level RE models. Specifically, we introduce coreference distillation to inject coreference knowledge, endowing an RE model with the more general capability of coreference reasoning. We also employ representation reconciliation to inject factual knowledge and aggregate KG representations and document representations into a unified space. The experiments on two benchmark datasets validate the generalization of our entity knowledge injection framework and the consistent improvement to several document-level RE models.
翻译:文件级关系提取(RE)的目的是在整个文件中查明各实体之间的关系,它需要复杂的推理技巧,以综合各种知识,例如共同参考和共同思维。大型知识图表包含大量真实世界的事实,可为文件级可再生能源提供宝贵的知识。我们在本文件中提议了一个实体知识注入框架,以加强目前的文件级可再生能源模型。具体地说,我们引入了共同筛选,以注入共同参考知识,将可再生能源模型与更普遍的共同参考推理能力相结合。我们还采用代表性调节,将事实知识以及综合KG表示和文件表述注入一个统一的空间。两个基准数据集的实验验证了我们实体知识注入框架的普遍化和若干文件级可再生能源模型的一致改进。