This paper presents a new proposal of an efficient computational model of face and object recognition which uses cues from the distributed face and object recognition mechanism of the brain, and by gathering engineering equivalent of these cues from existing literature. Three distinct and widely used features, Histogram of Oriented Gradients, Local Binary Patterns, and Principal components extracted from target images are used in a manner which is simple, and yet effective. Our model uses multi-layer perceptrons (MLP) to classify these three features and fuse them at the decision level using sum rule. A computational theory is first developed by using concepts from the information processing mechanism of the brain. Extensive experiments are carried out using fifteen publicly available datasets to validate the performance of our proposed model in recognizing faces and objects with extreme variation of illumination, pose angle, expression, and background. Results obtained are extremely promising when compared with other face and object recognition algorithms including CNN and deep learning based methods. This highlights that simple computational processes, if clubbed properly, can produce competing performance with best algorithms.


翻译:本文介绍了一个高效的面部和物体识别计算模型的新建议,该模型使用分布式脸部和物体识别机制的提示,并从现有文献中收集这些提示的工程等量。三个不同和广泛使用的特征是:从目标图像中提取的定向梯形、本地二进制图和主要组成部分的直观图以简单而有效的方式使用。我们的模型使用多层透视器(MLP)对这三个特征进行分类,并使用总则在决策一级将其结合。首先,利用大脑信息处理机制的概念来发展一种计算理论。进行广泛的实验,利用15套公开可得的数据集来验证我们提议的模型在识别面部和物体方面的性能,这些表象和物体与极不同的亮度、角度、表达方式和背景。与包括CNN和深层次学习方法在内的其他脸部和对象识别算法相比,所取得的结果非常有希望。这突出表明,简单的计算过程,如果能正确使用结扎实,则可以产生与最佳算法的竞争性性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
5+阅读 · 2020年3月17日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
3+阅读 · 2018年6月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员