We propose a learning framework for calibrating predictive models to make loss-controlling prediction for exchangeable data, which extends our recently proposed conformal loss-controlling prediction for more general cases. By comparison, the predictors built by the proposed loss-controlling approach are not limited to set predictors, and the loss function can be any measurable function without the monotone assumption. To control the loss values in an efficient way, we introduce transformations preserving exchangeability to prove finite-sample controlling guarantee when the test label is obtained, and then develop an approximation approach to construct predictors. The transformations can be built on any predefined function, which include using optimization algorithms for parameter searching. This approach is a natural extension of conformal loss-controlling prediction, since it can be reduced to the latter when the set predictors have the nesting property and the loss functions are monotone. Our proposed method is tested empirically for high-impact weather forecasting and the experimental results demonstrate its effectiveness for controlling the non-monotone loss related to false discovery.
翻译:我们提议了一个用于校准预测模型的学习框架,以对可交换数据进行损失控制预测,从而扩大我们最近提议的对一般案例的一致损失控制预测。相比之下,拟议损失控制方法所建造的预测器并不局限于设置预测器,损失函数可以是任何可测量的功能,而没有单质假设。为了有效地控制损失值,我们引入了可交换性,以证明获得试验标签时的有限抽样控制保证,然后开发了一种构建预测器的近似方法。这种转换可以建立在任何预先界定的功能上,其中包括使用优化算法进行参数搜索。这种方法是连续控制损失预测的自然延伸,因为当设定的预测器拥有嵌巢属性,而损失函数是单质时,它可以缩到后者。我们提出的方法在高影响天气预报和实验结果中经过实验测试,证明它控制与虚假发现有关的非分子损失的有效性。