We propose a learning framework for calibrating predictive models to make loss-controlling prediction for exchangeable data, which extends our recently proposed conformal loss-controlling prediction for more general cases. By comparison, the predictors built by the proposed loss-controlling approach are not limited to set predictors, and the loss function can be any measurable function without the monotone assumption. To control the loss values in an efficient way, we introduce transformations preserving exchangeability to prove finite-sample controlling guarantee when the test label is obtained, and then develop an approximation approach to construct predictors. The transformations can be built on any predefined function, which include using optimization algorithms for parameter searching. This approach is a natural extension of conformal loss-controlling prediction, since it can be reduced to the latter when the set predictors have the nesting property and the loss functions are monotone. Our proposed method is tested empirically for high-impact weather forecasting and the experimental results demonstrate its effectiveness for controlling the non-monotone loss related to false discovery.


翻译:我们提议了一个用于校准预测模型的学习框架,以对可交换数据进行损失控制预测,从而扩大我们最近提议的对一般案例的一致损失控制预测。相比之下,拟议损失控制方法所建造的预测器并不局限于设置预测器,损失函数可以是任何可测量的功能,而没有单质假设。为了有效地控制损失值,我们引入了可交换性,以证明获得试验标签时的有限抽样控制保证,然后开发了一种构建预测器的近似方法。这种转换可以建立在任何预先界定的功能上,其中包括使用优化算法进行参数搜索。这种方法是连续控制损失预测的自然延伸,因为当设定的预测器拥有嵌巢属性,而损失函数是单质时,它可以缩到后者。我们提出的方法在高影响天气预报和实验结果中经过实验测试,证明它控制与虚假发现有关的非分子损失的有效性。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
《机器学习的最优传输》教程,63页PPT
专知会员服务
61+阅读 · 2022年4月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月7日
Arxiv
0+阅读 · 2023年3月7日
Arxiv
0+阅读 · 2023年3月3日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员