We consider generic optimal Bayesian inference, namely, models of signal reconstruction where the posterior distribution and all hyperparameters are known. Under a standard assumption on the concentration of the free energy, we show how replica symmetry in the strong sense of concentration of all multioverlaps can be established as a consequence of the Franz-de Sanctis identities; the identities themselves in the current setting are obtained via a novel perturbation coming from exponentially distributed "side-observations" of the signal. Concentration of multioverlaps means that asymptotically the posterior distribution has a particularly simple structure encoded by a random probability measure (or, in the case of binary signal, a non-random probability measure). We believe that such strong control of the model should be key in the study of inference problems with underlying sparse graphical structure (error correcting codes, block models, etc) and, in particular, in the rigorous derivation of replica symmetric formulas for the free energy and mutual information in this context.
翻译:我们认为通用最佳贝叶斯推论,即信号重建模型,即事后分布和所有超参数都已知的信号重建模型。根据自由能源集中的标准假设,我们展示如何通过弗朗茨-德桑克蒂斯特性,在所有多重叠的强烈集中感中,建立复制的对称性;当前环境中的身份本身是通过从信号的指数分布的“侧面观察”中获得的新的扰动获得的。多重叠的集中意味着,在随机概率测量(或者,在二元信号的情况下,非随机概率测量)中,后方分布有一个特别简单的结构。 我们认为,对模型的这种强有力的控制应该是研究潜在稀薄的图形结构(电源校正代码、块模型等)的推论问题的关键,特别是严格地推断自由能源和这方面相互信息的复制的对称公式。