As multimedia content often contains noise from intrinsic defects of digital devices, image denoising is an important step for high-level vision recognition tasks. Although several studies have developed the denoising field employing advanced Transformers, these networks are too momory-intensive for real-world applications. Additionally, there is a lack of research on lightweight denosing (LWDN) with Transformers. To handle this, this work provides seven comparative baseline Transformers for LWDN, serving as a foundation for future research. We also demonstrate the parts of randomly cropped patches significantly affect the denoising performances during training. While previous studies have overlooked this aspect, we aim to train our baseline Transformers in a truly fair manner. Furthermore, we conduct empirical analyses of various components to determine the key considerations for constructing LWDN Transformers. Codes are available at https://github.com/rami0205/LWDN.


翻译:随着多媒体内容通常包含数字设备固有缺陷导致的噪声,图像去噪对于高级视觉识别任务非常重要。尽管一些研究已经使用先进的Transformer开发了去噪领域,但这些网络对于实际应用来说太过内存密集。此外,缺少对采用Transformer的轻量级去噪(LWDN)的研究。为了解决这个问题,本文提供了7个适用于LWDN的比较基准Transformer,为未来的研究奠定了基础。我们还演示了随机裁剪图像补丁的部分显著影响训练中的去噪性能。尽管以前的研究忽略了这个方面,我们旨在以真正公正的方式训练基准Transformer。此外,我们进行了多种组件的实证分析,以确定构建LWDN Transformer的关键考虑因素。代码可在https://github.com/rami0205/LWDN获取。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
69+阅读 · 2022年6月13日
Arxiv
33+阅读 · 2022年2月15日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员