Vertical federated learning (VFL), a variant of Federated Learning (FL), has recently drawn increasing attention as the VFL matches the enterprises' demands of leveraging more valuable features to achieve better model performance. However, conventional VFL methods may run into data deficiency as they exploit only aligned and labeled samples (belonging to different parties), leaving often the majority of unaligned and unlabeled samples unused. The data deficiency hampers the effort of the federation. In this work, we propose a Federated Hybrid Self-Supervised Learning framework, named FedHSSL, that utilizes cross-party views (i.e., dispersed features) of samples aligned among parties and local views (i.e., augmentation) of unaligned samples within each party to improve the representation learning capability of the VFL joint model. FedHSSL further exploits invariant features across parties to boost the performance of the joint model through partial model aggregation. FedHSSL, as a framework, can work with various representative SSL methods. We empirically demonstrate that FedHSSL methods outperform baselines by large margins. We provide an in-depth analysis of FedHSSL regarding label leakage, which is rarely investigated in existing self-supervised VFL works. The experimental results show that, with proper protection, FedHSSL achieves the best privacy-utility trade-off against the state-of-the-art label inference attack compared with baselines. Code is available at \url{https://github.com/jorghyq2016/FedHSSL}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月27日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
0+阅读 · 2023年7月27日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
14+阅读 · 2021年3月10日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员