Combinatorial topology is used in distributed computing to model concurrency and asynchrony. The basic structure in combinatorial topology is the simplicial complex, a collection of subsets called simplices of a set of vertices, closed under containment. Pure simplicial complexes describe message passing in asynchronous systems where all processes (agents) are alive, whereas impure simplicial complexes describe message passing in synchronous systems where processes may be dead (have crashed). Properties of impure simplicial complexes can be described in a three-valued multi-agent epistemic logic where the third value represents formulas that are undefined, e.g., the knowledge and local propositions of dead agents. In this work we present the axiomatization called $\mathsf{S5}^{\bowtie}$ and show that it is sound and complete for the class of impure complexes. The completeness proof involves the novel construction of the canonical simplicial model and requires a careful manipulation of undefined formulas.
翻译:组合式地形学用于分布式计算模型同值货币和无同步。 组合式地形学的基本结构是简易复合体, 集成的子集称为一组在封闭状态下封闭的脊椎的简化。 纯简化式复合体描述了在所有过程( 试剂) 都存在的非同步系统中传递的信息, 而不纯的简化式复合体则描述了在同步系统中传递的信息, 在这些系统中, 程序可能已经死亡( 已经崩溃 ) 。 不纯的简化式复合体的属性可以在三种价值的多试剂缩入逻辑中描述, 第三个值代表了未定义的公式, 例如, 死亡剂的知识和局部主张。 在这项工作中, 我们展示了名为 $\ mathfsf{ S5 ⁇ bowtie}$ 的氧化法化, 并显示它对于不纯复合的类别来说是合理和完整的。 完整性证明涉及精准型模型的新构造, 需要谨慎地对未定义的公式进行操纵 。