High image resolution is critical to obtain a good performance in many computer vision applications. Computational complexity of CNNs, however, grows significantly with the increase in input image size. Here, we show that it is almost always possible to modify a network such that it achieves higher accuracy at a higher input resolution while having the same number of parameters or/and FLOPS. The idea is similar to the EfficientNet paper but instead of optimizing network width, depth and resolution simultaneously, here we focus only on input resolution. This makes the search space much smaller which is more suitable for low computational budget regimes. More importantly, by controlling for the number of model parameters (and hence model capacity), we show that the additional benefit in accuracy is indeed due to the higher input resolution. Preliminary empirical investigation over MNIST, Fashion MNIST, and CIFAR10 datasets demonstrates the efficiency of the proposed approach.


翻译:高图像分辨率对于在许多计算机视觉应用软件中取得良好表现至关重要。 但是,随着输入图像规模的增加,CNN的计算复杂性会大幅增长。在这里,我们表明几乎总是有可能修改网络,使其在较高的输入分辨率上达到更高的准确度,同时具有相同数量的参数或/和FLOPS。这个想法与高效网络纸类似,而不是同时优化网络宽度、深度和分辨率,我们在这里只关注输入分辨率。这使得搜索空间小得多,更适合低计算预算制度。更重要的是,通过控制模型参数的数量(以及模型能力),我们表明准确性的额外好处确实在于投入分辨率更高。对MNIST、Fashon MNIST和CIFAR10数据集的初步经验调查显示了拟议方法的效率。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
19+阅读 · 2021年4月4日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年11月21日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
11+阅读 · 2019年4月15日
Deformable ConvNets v2: More Deformable, Better Results
Arxiv
8+阅读 · 2018年5月17日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员