SSD (Single Shot Multibox Detector) is one of the best object detection algorithms with both high accuracy and fast speed. However, SSD's feature pyramid detection method makes it hard to fuse the features from different scales. In this paper, we proposed FSSD (Feature Fusion Single Shot Multibox Detector), an enhanced SSD with a novel and lightweight feature fusion module which can improve the performance significantly over SSD with just a little speed drop. In the feature fusion module, features from different layers with different scales are concatenated together, followed by some down-sampling blocks to generate new feature pyramid, which will be fed to multibox detectors to predict the final detection results. On the Pascal VOC 2007 test, our network can achieve 82.7 mAP (mean average precision) at the speed of 65.8 FPS (frame per second) with the input size 300$\times$300 using a single Nvidia 1080Ti GPU. In addition, our result on COCO is also better than the conventional SSD with a large margin. Our FSSD outperforms a lot of state-of-the-art object detection algorithms in both aspects of accuracy and speed. Code is available at https://github.com/lzx1413/CAFFE_SSD/tree/fssd.
翻译:SSD(Singshot Moltipbox 探测器) 是最佳的物体探测算法之一, 精度和速度都很高。 然而, SSD的特征金字塔探测方法使得不同比例的特征难以连接。 在本文中, 我们提议SSD(FSD(Festure Fusion Sungion Singing Singow Singow Support Fultbox Vox 探测器), 是一个具有新颖和轻量级特性的聚合模块, 能够大大提高SD的性能。 在特性组合模块中, 不同尺度的不同层的特征被组合在一起, 并随后有一些下标块生成新的特征金字塔, 并被反馈给多箱探测器, 以预测最终检测结果。 在 Pascal VOC 2007 测试中, 我们的网络可以以65.8 FPS(每秒框架)的速度达到82.7 mAP(平均精确度), 其输入大小为300 $300 。 。 此外, 我们关于COOCO 的结果也比常规的SDSD和大边缘的SDFSD+FAFSDSDSD/ sqreals 的精确度/ sqs 。