The first generic self-stabilizing transformer for local problems in a constrained bandwidth model is introduced. This transformer can be applied to a wide class of locally checkable labeling (LCL) problems, converting a given fault free synchronous algorithm that satisfies certain conditions into a self-stabilizing synchronous algorithm for the same problem. The resulting self-stabilizing algorithms are anonymous, size-uniform, and \emph{fully adaptive} in the sense that their time complexity is bounded as a function of the number $k$ of nodes that suffered faults (possibly at different times) since the last legal configuration. Specifically, for graphs whose degrees are up-bounded by $\Delta$, the algorithms produced by the transformer stabilize in time proportional to $\log (k + \Delta)$ in expectation, independently of the number of nodes in the graph (in some cases, the dependency on $\Delta$ can also be omitted). As such, the transformer is applicable also for infinite graphs (with degree bound $\Delta$). Another appealing feature of the transformer is its small message size overhead. The transformer is applied to known algorithms (or simple variants thereof) for some classic LCL problems, producing the first anonymous size-uniform self-stabilizing algorithms for these problems that are provably fully adaptive. From a technical point of view, the transformer's key design feature is a novel probabilistic tool that allows different nodes to act in synchrony even though their clocks may have been adversarially manipulated.


翻译:引入了第一个用于限制带宽模型中本地问题的通用自稳定变压器。 这个变压器可以应用到一个广泛的本地可检查标签( LCL) 问题类别, 将满足某些条件的自错自同步算法转换为同一问题的自稳定同步算法。 由此产生的自稳定算法是匿名的, 大小一致, 和\ emph{ 完全适应}, 其时间复杂性与自限制带带宽带宽带宽带宽带宽带宽带宽( 可能在不同时期) 的节点数的函数有关。 具体地说, 对于以$\ Delta$为上限的图表, 将某个自带宽带宽带宽带宽带宽的节点的节点的节点调变压器。 另一种由变压器生成的算法稳定在时间上与 $\log( k+\ Delta) 相匹配, 与图表中的节点数无关( 在某些情况下, 对 $\ Delta$ 也有可能省略带宽带宽带宽带宽带宽带宽带宽的变变压的图, 。 变压的变压的变压是其变压的变压的变压的变压法, 它的另一种的变压法是其的变压的变压的变压法, 虽然的变压的变压的变压法, 虽然的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式是的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
304+阅读 · 2020年11月26日
系列教程GNN-algorithms之六:《多核卷积拓扑图—TAGCN》
专知会员服务
49+阅读 · 2020年8月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2017年11月22日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月10日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
304+阅读 · 2020年11月26日
系列教程GNN-algorithms之六:《多核卷积拓扑图—TAGCN》
专知会员服务
49+阅读 · 2020年8月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2017年11月22日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员