The first generic self-stabilizing transformer for local problems in a constrained bandwidth model is introduced. This transformer can be applied to a wide class of locally checkable labeling (LCL) problems, converting a given fault free synchronous algorithm that satisfies certain conditions into a self-stabilizing synchronous algorithm for the same problem. The resulting self-stabilizing algorithms are anonymous, size-uniform, and \emph{fully adaptive} in the sense that their time complexity is bounded as a function of the number $k$ of nodes that suffered faults (possibly at different times) since the last legal configuration. Specifically, for graphs whose degrees are up-bounded by $\Delta$, the algorithms produced by the transformer stabilize in time proportional to $\log (k + \Delta)$ in expectation, independently of the number of nodes in the graph (in some cases, the dependency on $\Delta$ can also be omitted). As such, the transformer is applicable also for infinite graphs (with degree bound $\Delta$). Another appealing feature of the transformer is its small message size overhead. The transformer is applied to known algorithms (or simple variants thereof) for some classic LCL problems, producing the first anonymous size-uniform self-stabilizing algorithms for these problems that are provably fully adaptive. From a technical point of view, the transformer's key design feature is a novel probabilistic tool that allows different nodes to act in synchrony even though their clocks may have been adversarially manipulated.
翻译:引入了第一个用于限制带宽模型中本地问题的通用自稳定变压器。 这个变压器可以应用到一个广泛的本地可检查标签( LCL) 问题类别, 将满足某些条件的自错自同步算法转换为同一问题的自稳定同步算法。 由此产生的自稳定算法是匿名的, 大小一致, 和\ emph{ 完全适应}, 其时间复杂性与自限制带带宽带宽带宽带宽带宽带宽带宽( 可能在不同时期) 的节点数的函数有关。 具体地说, 对于以$\ Delta$为上限的图表, 将某个自带宽带宽带宽带宽带宽的节点的节点的节点调变压器。 另一种由变压器生成的算法稳定在时间上与 $\log( k+\ Delta) 相匹配, 与图表中的节点数无关( 在某些情况下, 对 $\ Delta$ 也有可能省略带宽带宽带宽带宽带宽带宽带宽的变变压的图, 。 变压的变压的变压是其变压的变压的变压的变压法, 它的另一种的变压法是其的变压的变压的变压法, 虽然的变压的变压的变压法, 虽然的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式是的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变