The majority of model-based learned image reconstruction methods in medical imaging have been limited to uniform domains, such as pixelated images. If the underlying model is solved on nonuniform meshes, arising from a finite element method typical for nonlinear inverse problems, interpolation and embeddings are needed. To overcome this, we present a flexible framework to extend model-based learning directly to nonuniform meshes, by interpreting the mesh as a graph and formulating our network architectures using graph convolutional neural networks. This gives rise to the proposed iterative Graph Convolutional Newton-type Method (GCNM), which includes the forward model in the solution of the inverse problem, while all updates are directly computed by the network on the problem specific mesh. We present results for Electrical Impedance Tomography, a severely ill-posed nonlinear inverse problem that is frequently solved via optimization-based methods, where the forward problem is solved by finite element methods. Results for absolute EIT imaging are compared to standard iterative methods as well as a graph residual network. We show that the GCNM has strong generalizability to different domain shapes and meshes, out of distribution data as well as experimental data, from purely simulated training data and without transfer training.


翻译:在医学成像中,大多数基于模型的学习图像重建方法都局限于统一领域,例如像素图像。如果基础模型在非统一模层上解决,这是非线性反问题典型的有限元素方法产生的,那么就需要内插和嵌入。要克服这一点,我们提出了一个灵活的框架,将基于模型的学习直接扩展到非统一模层,方法是将网状作为图解图解,并使用图象卷发神经网络网络来制定我们的网络结构。这产生了拟议的迭代图式牛顿式牛顿型方法(GCNM),其中包括解决反向问题的前方模型,而所有更新都由网络直接计算,而关于问题特定网状的网状。我们展示了电气障碍成像学的结果,这是一个严重错误的、非线性反向的问题,通常通过基于优化的方法解决,而远端问题则用有限的元素方法解决。绝对的性经济成像结果与标准的迭代法比较,以及一个图形残存网络。我们表明,GCNM具有很强的可概括性,从纯度数据分布到没有进行模拟的域模版模模模模模模模版数据传输和模模版数据传输。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2019年11月14日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年8月12日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
6+阅读 · 2019年11月14日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年8月12日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员