In recent years, researchers have proposed many deep learning (DL) methods for various tasks, and particularly face recognition (FR) made an enormous leap using these techniques. Deep FR systems benefit from the hierarchical architecture of the DL methods to learn discriminative face representation. Therefore, DL techniques significantly improve state-of-the-art performance on FR systems and encourage diverse and efficient real-world applications. In this paper, we present a comprehensive analysis of various FR systems that leverage the different types of DL techniques, and for the study, we summarize 168 recent contributions from this area. We discuss the papers related to different algorithms, architectures, loss functions, activation functions, datasets, challenges, improvement ideas, current and future trends of DL-based FR systems. We provide a detailed discussion of various DL methods to understand the current state-of-the-art, and then we discuss various activation and loss functions for the methods. Additionally, we summarize different datasets used widely for FR tasks and discuss challenges related to illumination, expression, pose variations, and occlusion. Finally, we discuss improvement ideas, current and future trends of FR tasks.
翻译:近年来,研究人员为各种任务提出了许多深层次学习(DL)方法,特别是面部识别(FR)方法,利用这些技术取得了巨大的飞跃。深FR系统受益于DL方法的等级结构,以学习有区别的面部表现。因此,DL技术极大地改进了FR系统的最新性能,鼓励了多样化和高效率的现实世界应用。在本文件中,我们全面分析了利用不同类型DL技术的各种FR系统,并为研究总结了本领域最近168项贡献。我们讨论了与不同算法、结构、损失功能、激活功能、数据集、挑战、改进想法、基于DLFR系统当前和未来趋势有关的文件。我们详细讨论了各种DL方法,以了解目前的状况,然后我们讨论了这些方法的各种激活和损失功能。此外,我们总结了广泛用于FR任务的不同数据集,并讨论了与污染、表达、造成差异和隐蔽有关的挑战。最后,我们讨论了改进了基于DLFR任务的想法、当前和未来趋势。