Hashing-based Recommender Systems (RSs) are widely studied to provide scalable services. The existing methods for the systems combine three modules to achieve efficiency: feature extraction, interaction modeling, and binarization. In this paper, we study an unexplored module combination for the hashing-based recommender systems, namely Compact Cross-Similarity Recommender (CCSR). Inspired by cross-modal retrieval, CCSR utilizes Maximum a Posteriori similarity instead of matrix factorization and rating reconstruction to model interactions between users and items. We conducted experiments on MovieLens1M, Amazon product review, Ichiba purchase dataset and confirmed CCSR outperformed the existing matrix factorization-based methods. On the Movielens1M dataset, the absolute performance improvements are up to 15.69% in NDCG and 4.29% in Recall. In addition, we extensively studied three binarization modules: $sign$, scaled tanh, and sign-scaled tanh. The result demonstrated that although differentiable scaled tanh is popular in recent discrete feature learning literature, a huge performance drop occurs when outputs of scaled $tanh$ are forced to be binary.
翻译:为提供可缩放的服务,广泛研究了基于大麻的推荐系统(RSs),以提供可缩放的服务。这些系统的现有方法结合了三个模块,以提高效率:特征提取、互动建模和二进制。在本文中,我们研究了基于大麻的推荐系统的未探索模块组合,即Claim Cross-Simalize建议系统(CCSR)。在跨模式检索的启发下,CCSR利用了最相似的后继模式,而不是矩阵乘数和对用户和项目之间模式互动的重新评级。我们进行了电影Lens1M、亚马孙产品审查、Ichiba购买数据集的实验,并确认了CCSR比现有的矩阵因数化方法要好。在Movelens1M数据集中,绝对性能改进在NDCG达到15.69%,在回想中达到4.29%。此外,我们广泛研究了三个二进制模块:美元、缩放的土制和标志缩放的制。结果显示,尽管不同规模的土制在最近的离心功能学习文献中很受欢迎,但当硬硬成成硬的硬成品时会发生巨大的性下降。