In this paper, we explore the 'equivalence principle' (EP): roughly, statements about mathematical objects should be invariant under an appropriate notion of equivalence for the kinds of objects under consideration. In set theoretic foundations, EP may not always hold: for instance, the statement '1 \in N' is not invariant under isomorphism of sets. In univalent foundations, on the other hand, EP has been proven for many mathematical structures. We first give an overview of earlier attempts at designing foundations that satisfy EP. We then describe how univalent foundations validates EP.
翻译:在本文中,我们探讨了“等效原则” (EP):大致而言,关于数学对象的叙述应该在考虑的物体类型的适当等值概念下是不变的。在确定理论基础时,EP不一定总能坚持:例如,“1\ in N”的表述并不是在各组的无异性之下。另一方面,在非虚拟基础中,EP在许多数学结构中得到了证明。我们首先概述了早先设计满足EP基础的尝试。然后我们描述了非虚拟基础是如何验证EP的。