We generalize a graph-based multiclass semi-supervised classification technique based on diffuse interface methods to multilayer graphs. Besides the treatment of various applications with an inherent multilayer structure, we present a very flexible approach that interprets high-dimensional data in a low-dimensional multilayer graph representation. Highly efficient numerical methods involving the spectral decomposition of the corresponding differential graph operators as well as fast matrix-vector products based on the nonequispaced fast Fourier transform (NFFT) enable the rapid treatment of large and high-dimensional data sets. We perform various numerical tests putting a special focus on image segmentation. In particular, we test the performance of our method on data sets with up to 10 million nodes per layer as well as up to 104 dimensions resulting in graphs with up to 52 layers. While all presented numerical experiments can be run on an average laptop computer, the linear dependence per iteration step of the runtime on the network size in all stages of our algorithm makes it scalable to even larger and higher-dimensional problems.
翻译:我们将基于分布界面的图形多级半监督分类技术推广到多层图形中。除了用内在多层结构处理各种应用外,我们还提出了一个非常灵活的方法,在低维多层图示中解释高维数据。高高效的数字方法涉及相应的不同图形操作员的光谱分解,以及基于无孔隙快速Fourier变换(NFFFT)的快速矩阵矢量产品,从而能够快速处理大型和高维数据集。我们进行了各种数字测试,特别侧重于图像分解。特别是,我们测试了我们关于数据集的方法的性能,每层有多达1 000万个节点,以及最多104个尺寸的图显示为52层。虽然所有提出的数字实验都可以用普通的膝上型计算机进行,但在我们算法各个阶段的网络大小上运行的运行时的线性依赖度,使得它可以伸缩到更大和更高维的问题。